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ABSTRACT

Background: Recently, the hallmarks of aging were updated to include dysbiosis, disabled macroautophagy, and chronic inflammation. In
particular, the low-grade chronic inflammation during aging, without overt infection, is defined as “inflammaging,” which is associated with
increased morbidity and mortality in the aging population. Emerging evidence suggests a bidirectional and cyclical relationship between chronic
inflammation and the development of age-related conditions, such as cardiovascular diseases, neurodegeneration, cancer, and frailty. How the
crosstalk between chronic inflammation and other hallmarks of aging underlies biological mechanisms of aging and age-related disease is thus of
particular interest to the current geroscience research.
Scope of review: This review integrates the cellular and molecular mechanisms of age-associated chronic inflammation with the other eleven
hallmarks of aging. Extra discussion is dedicated to the hallmark of “altered nutrient sensing,” given the scope of Molecular Metabolism. The
deregulation of hallmark processes during aging disrupts the delicate balance between pro-inflammatory and anti-inflammatory signaling,
leading to a persistent inflammatory state. The resultant chronic inflammation, in turn, further aggravates the dysfunction of each hallmark,
thereby driving the progression of aging and age-related diseases.
Main conclusions: The crosstalk between chronic inflammation and other hallmarks of aging results in a vicious cycle that exacerbates the
decline in cellular functions and promotes aging. Understanding this complex interplay will provide new insights into the mechanisms of aging and
the development of potential anti-aging interventions. Given their interconnectedness and ability to accentuate the primary elements of aging,
drivers of chronic inflammation may be an ideal target with high translational potential to address the pathological conditions associated with
aging.

� 2023 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. INTRODUCTION

Aging is a complex process that affects humans at the molecular,
cellular, tissue, and systemic levels. It results, in part, from the
compounding accumulation of damage and waning repair mecha-
nisms at each hierarchical level, altogether contributing to the devel-
opment of age-related diseases (ARDs) later in life. Therefore, to no
surprise, aging is the single most important risk factor for many
chronic diseases contributing to morbidity and mortality. While aging
predisposes older populations to more severe infection resulting from
communicable diseases, such as influenza and severe acute respi-
ratory syndrome coronavirus 2 (SARS-CoV-2) [1,2], this review will
focus on the interplay of inflammaging and aging hallmarks associated
with non-communicable diseases such as cardiovascular diseases
(CVDs), cancer, osteoarthritis, type 2 diabetes (T2D), and
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neurodegenerative diseases such as Alzheimer’s disease (AD) and
Parkinson’s disease (PD) [3,4].
Despite many proposed theories, none alone comprehensively cap-
tures the aging process. Age-related changes were traditionally
depicted by nine cellular and molecular hallmarks of aging that include
1) genomic instability, 2) telomere attrition, 3) epigenetic alterations, 4)
loss of proteostasis, 5) deregulated nutrient sensing, 6) mitochondrial
dysfunction, 7) cellular senescence, 8) stem cell exhaustion and 9)
altered intercellular communication [5] (Figure 1). More recently,
several concepts have emerged in light of advances in high throughput
multi-omics analysis, such as transcriptomics, proteomics, and epi-
genomics. In a recent review, López-Otin and colleagues expanded on
the original nine hallmarks of aging, including disabled macro-
autophagy, dysbiosis, and chronic inflammation [6]. Each hallmark not
only manifests during normal aging but the corresponding aging
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Figure 1: Chronic Inflammation and the Hallmarks of Aging: Relationships of chronic inflammation and other hallmarks of aging: genomic instability, telomere attrition,
epigenetic changes, loss of proteostasis, and disabled autophagy grouped as the primary hallmarks; deregulated nutrient sensing, mitochondrial dysfunction, and cellular
senescence grouped as the antagonistic hallmarks; altered intercellular communication, stem cell exhaustion, and dysbiosis grouped as the integrative hallmarks (López-Otín,
2023).
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pathology can be exacerbated or reduced through experimental
aggravation or amelioration of the hallmark [5,6]. The large degree of
mechanistic interplay between the hallmarks makes the hallmark re-
lationships best characterized as a web of bidirectional loop in-
teractions rather than stand-alone pillars.
Under the geroscience hypothesis, failure in this “network of aging”
and their homeostatic mechanisms accelerates the pace of aging and
susceptibility to ARDs. An integrated and holistic approach to aging
biology emphasizes the significance of influential factors across the
network of hallmarks, including diet, exercise, and other lifestyle
factors. The human immune system, specifically inflammation, is also
largely considered one of these ubiquitous factors that, to some de-
gree, impacts each of these processes [7]. Inflammation is a broad
term referring to the defense mechanisms that evolved to protect an
organism from infection and injury. While acute inflammation is a
cascade of steps in response to infection or injury that ultimately clears
invading pathogens and incites wound healing, chronic inflammation is
a potentially pathologic process arising from the perpetuity of the initial
trigger or the dysregulation of signaling pathways that is harmful to
health. “Inflammaging” describes this non-resolving, low-grade, and
chronic inflammation process that progresses with age [8,9].
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This review emphasizes the broad overview of bidirectional relation-
ships between chronic inflammation and the other 11 hallmarks of
aging, which contribute to “inflammaging.” We will dedicate additional
discussion on altered nutrient sensing.

2. PRIMARY HALLMARKS

The primary hallmarks, either individually or through synergy, can lead
to damage on a molecular and cellular level. The cumulative effects of
this damage are universally negative and believed to be involved in the
instigation and progression of ARDs.

2.1. Genomic instability
Genomic instability refers to DNA alterations, including changes in
nucleic acid sequences and aneuploidies [10]. These events can
irreversibly alter the content of the genome, contributing to detrimental
changes in gene expression, cell division, senescence, and death.
Altogether, these cell outcomes conspire towards functional impair-
ment at the tissue level and ultimately manifest accelerated aging
pathology and ARDs as cells accumulate nuclear and mitochondrial
genomic damage with age. Maintenance of genomic stability is
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essential for cellular integrity to prevent errors from DNA replication by
endogenous and exogenous challenges. Each day, endogenous insults
- including replication errors and free radical damage during normal
metabolism - result in as many as 104e105 DNA lesions per human
cell [11,12]. While aberration from exogenous exposures (such as
ultraviolet light (UV), ionizing radiation, mutagenic chemicals, etc.) are
largely unique to each individual’s biography of exposures, the rela-
tively high baseline rate of DNA damage suggests that the stability of
the genome largely hinges on effective DNA repair processes which
diminish with age rather than avoiding damage altogether. This decline
in repair capacity is thought to contribute to the accumulation of
genomic insults and accelerated aging pathology later in life, as well as
the stepwise increase in cancer with age [12,13].
Chronic inflammation and oxidative stress are interconnected patho-
logical processes that lead to genomic damage and instability (Figure 2).
Figure 2: Proposed Mechanisms of Relationships Underlying Chronic Inflammation
aging via a complex network of intra- and extracellular signalings, including but not limited
and a result of aging. A ¼ adenine, AID ¼ activation-induced cytidine deaminase, AKT
ATP ¼ adenosine triphosphate, CASP1 ¼ caspase-1, cGAS ¼ cyclic GMPeAMP synth
DDR ¼ deoxyribonucleic acid damage response, DNMT ¼ methyltransferase, EV ¼ extrac
transferase Mu 2, GTP ¼ guanine triphosphate, hTERT ¼ human telomerase reverse trans
nuclear factor-kB (IkB) kinase, IL ¼ interleukin, IR ¼ insulin receptor, IRF ¼ Interferon reg
MMR ¼ mismatch repair, mtDNA ¼ mitochondrial eoxyribonucleic acid, mTORC ¼ mech
NER ¼ nucleotide excision repair, NF-kB ¼ nuclear factor kappa B, NLRP3 ¼ nod-like rece
molecules, PDK1 ¼ 3-phosphoinositide-dependent protein kinase-1, PP2C ¼ Protein ph
SASP ¼ senescence-associated secretory phenotype, SCFA ¼ short chain fatty acid, ST
receptor, TNF ¼ tumor necrosis factor, TSC ¼ tuberous sclerosis complex.

MOLECULAR METABOLISM 74 (2023) 101755 � 2023 The Authors. Published by Elsevier GmbH. This is an open a
www.molecularmetabolism.com
This process is most keenly characterized in the inflammation-mediated
initiation and progression of cancers, where chronic inflammation has
been shown to account for 20e25% of cancers [14] and influence
mitogenicity [15]. However, the inflammation-induced genomic insta-
bility that potentiates the fitness of cancer cells can also result in the
cellular and tissue debility characteristic of aging decline [16]. There-
fore, the relationship between chronic inflammation and genomic
instability is multifaceted and bidirectional.

2.1.1. Genomic instability leads to inflammation
Chronic inflammation can also be caused by genomic damage and
instability by several mechanisms generating a bidirectional feedback
loop. Firstly, reactive oxygen species (ROS) induced single-stranded
breaks, which can be detected by the DNA-break sensor, poly (aden-
osine diphosphate-ribose) polymerase 1 (PARP1) [17]. Persistent PARP1
and the Hallmarks of Aging: Chronic inflammation interacts with other hallmarks of
to nutrient-sensing, danger-sensing, and autophagy pathways, acting as both a cause
¼ Protein kinase B, AMPK ¼ 50-adenosine monophosphate-activated protein kinase,
ase (cGAS), DAMPs ¼ deoxyribonucleic acid damage-associated molecular patterns,
ellular vesicle, FoxO ¼ forkhead box protein O, G ¼ guanine, GSTM2 ¼ Glutathione S-
criptase, IFN ¼ interferon, IGFR ¼ insulin-like growth factor receptor, IKK ¼ inhibitor of
ulatory factors, JNK ¼ jun n-terminal kinase, LKB-1 ¼ Liver Kinase B1, Me3 ¼ methyl,
anistic target of rapamycin complex, NAD/NADH ¼ nicotinamide adenine dinucleotide,
ptor family pyrin domain-containing 3, PAMPs ¼ pathogen-associated molecular pattern
osphatase 2C, ROS ¼ reactive oxygen species, S6K ¼ Ribosomal protein S6 kinase,
ING ¼ stimulator of interferon genes, TBK ¼ tank-binding kinase 1, TLR ¼ toll-like
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activation, however, depletes NADþ, which dampens downstream
sirtuin (Sirt) activities [18,19]. The resultant Sirt3 and Sirt5 depletion can
mediate the accruement of mitochondrial DNA damages, leading to the
pro-inflammatory cytokine profile of mitochondrial dysfunction-
associated senescence [20]. Impaired functions of other Sirts,
including Sirt2, also lead to higher nod-like receptor family pyrin
domain-containing 3 (NLRP3) inflammasome activity, which is associ-
ated with accelerated aging [21] and altered Sirt-dependent nutrient-
sensing pathways [22]. These intertwined impairments fuel accelerated
aging pathology by promoting inflammation and senescence through
mechanisms introduced in the following sections (Inflammation &
Cellular Senescence).
DNA damage can also directly trigger inflammation through leakage of
DNA into the cytoplasm, which can occur through ruptured micronuclei
or DNA end resection [23]. Cytoplasmic DNA can prompt the cyclic
GMPeAMP synthase (cGAS) stimulator of interferon gene (STING)
pathway to activate tank-binding kinase 1 (TBK1) and interferon reg-
ulatory factor 3 (IRF3) to induce a type I interferon (IFN) response and
nuclear factor kappa B (NF-kB) cascade. DNA damage response to
single and double-stranded breaks also recruits ataxia telangiectasia
and Rad3-related protein (ATR) and ataxia-telangiectasia mutated
(ATM), which activate NF-kB through GATA4 stabilization [24,25] or
directly activate tumor necrosis factor receptor-associated factor 6
(TRAF6) or STING [26,27]. Other events associated with DNA damage,
including DNA repair deficiencies, activation of transposons, cellular
senescence, R-loop formation, and changes in chromatin structure
that link DNA damage to inflammation and aging, have been recently
reviewed in detail [24,28].
Finally, if not corrected, genomic instability can lead to neoantigens in
cells, which predispose cells to be targeted by the immune system and
contribute to inflammation. This phenomenon is exemplified in the
susceptibility of microsatellite-unstable tumors, which are mismatch
repair (MMR)-deficient, to treatment with immunotherapies, such as
immune checkpoint inhibitors [29].

2.1.2. Inflammation causes genomic instability
Chronic inflammation has been shown to induce genomic instability
through multiple mechanisms. Among pro-inflammatory cytokines,
tumor necrosis factor-alpha (TNF-a) is commonly elevated with age
[30] and induces ROS through cell-specific and common mechanisms.
Specifically, binding of TNF-a to its receptors induces downstream
phosphorylation of p47phox (phox: phagocyte oxidase), which recruits
TRAF4. This complex then translocates to the plasma membrane,
facilitating nicotinamide adenine dinucleotide phosphate hydrogen
(NADPH) oxidase activity [31,32]. Despite the effectiveness of ROS
production in pathogen defense and cell signaling, ROS can directly
cause damage to macromolecules within cells, and DNA is one of the
most susceptible biological targets of oxidative stress due to its limited
structural stability [33]. ROS-mediated deleterious effects are thought
to contribute to human age-related degenerative conditions, including
AD [34] and PD [35], CVD [36], pulmonary fibrosis [37], nonalcoholic
fatty liver disease (NAFLD) [38], and reproductive decline [39,40]. A
more comprehensive review of the impact of inflammation-induced
ROS and reactive nitrogen species (RNS) on DNA base damage, as
well as strand breaks, has been published recently [41].
Chronic inflammation also downregulates MMR proteins, such as MutL
homolog 1 (MLH1), through various mechanisms attributable to TNF-a,
interleukin (IL)-1b, and Prostaglandin E1 (PGE1) signaling (Figure 2)
[42]. Mutations or epigenetic silencing of MMR members is associated
with increased genetic instability, termed microsatellite instability (MSI)
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which accentuates the accumulation of DNA replication errors
throughout the genome [43]. Additionally, IL-6, a marker of chronic
inflammation, appears to negatively impact the nucleotide excision
repair pathway, which is responsible for repairing a wide variety of
DNA lesions caused by UV radiation, mutagenic chemicals, and
chemotherapeutic agents [44]. The underlying mechanisms, however,
remain unclear.
Furthermore, activation-induced cytidine deaminase (AID) is a DNA
mutator enzyme induced by inflammation [45]. Evolutionarily, AID
functions in activated B cells to generate immune diversity by inducing
somatic hypermutation and class-switch recombination in immuno-
globulin genes [46]. Under chronic inflammation, however, AID can be
aberrantly expressed in epithelial cells and induce somatic mutations
and chromosomal aberrations [46]. The expression of AID is induced
by age-associated inflammatory cytokines, including NF-kB, IL-4, and
TGF-b (transforming growth factor-beta) [47,48] and overexpressed in
several inflammatory-mediated cancers and non-cancer-related in-
flammatory diseases such as chronic gastritis [49], ulcerative colitis
[50], and pancreatitis [51].
Finally, inducible nitric oxide synthase (NOS2), which produces NO,
and whose expression is associated with inflammation, was recently
shown to reduce DNA methyltransferase 1 (DNMT1), resulting in long
interspersed nuclear element 1 (LINE1) retrotransposon hypo-
methylation, expression, and DNA damage [52]. In addition, LINE1
induction can drive type I IFN secretion in senescent murine cells,
thereby contributing to the formation of a cycle where inflammation
further facilitates DNA damage, maintenance of senescence secretory
products and inflammaging [53]. The interplay between epigenetics,
inflammation and DNA damage is discussed further in subsequent
sections (Inflammation & Epigenetic Changes).

2.2. Telomere attrition
Somatic cells, including B cells and T cells, have a finite capacity to
divide due to the inability of DNA polymerase to completely synthesize
the distal ends, or telomeres, of eukaryotic DNA [54]. Thus, after a
certain number of cell cycles known as the “Hayflick Limit” [55],
telomere length decreases to a critical length, after which the cell
ceases to replicate and instead diverts to cellular senescence or
apoptosis through DNA damage response (DDR) signaling [56]. In
humans, the lack of somatic expression of telomerase, the enzyme
necessary for the maintenance of telomere length, in most cells ac-
celerates the progression of telomere erosion, which has been shown to
contribute to a pro-inflammatory milieu, the development of chronic
diseases, and shorter life expectancy [57]. Evidence suggests that age-
associated inflammation also worsens telomeric loss [58,59]. Short-
ened telomeres or altered telomere structures can ultimately lead to
apoptosis [60], cellular senescence [61], and a state of extensive
genomic instability known as “telomere crisis,” linking telomere attrition
to other hallmarks of aging [62,63]. This section will briefly discuss links
between telomere attrition and chronic inflammation in aging.

2.2.1. Telomere attrition promotes inflammation
Inflammation can be triggered and maintained on several levels by
telomere dysfunction. For example, the telomere-mitochondria axis has
recently been identified as a novel contributor to inflammation [64]. In
addition, during aging, DNA damage and telomere dysfunction activate
p53, which suppresses peroxisome proliferator-activated receptor
gamma coactivator 1 alpha (PGC-1a) and mitochondrial Sirts (Sirt3/4/5)
[65,66], thus impairing mitochondrial function and leading to over-
production of ROS [67]. The resultant oxidative stress promotes
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inflammation and further damages telomere structures [68]. Addition-
ally, in macrophages from late-generation telomerase-deficient mice,
downregulation of PGC-1a induces activation of the NLRP3 inflamma-
some, resulting in an amplified inflammatory response upon bacterial
challenge [69]. Increased caspase-1 from NLRP3 exacerbates inflam-
mation by facilitating the conversion of pro-IL-18 to mature IL-18, which
is sourced from telomere attrition-induced ATM/cABL activation and yes-
associated protein 1 (YAP1) nuclear translocation [62]. Furthermore,
telomere dysfunction resulting from shelterin loss also triggers auto-
phagic cell death by activating the cGAS-STING pathway [70], which can
initiate an inflammatory cascade via IRF3-TBK1emediated upregulation
of Type I interferons, leading to enhanced cross-priming activity and
recruitment of IFNg-producing CD8þ T cells [71].
Aging is also associated with telomere shortening in T cells [72], which
is associated with a loss of naive T cell pool, lower T cell receptor
diversity, and accumulation of antigen-experienced and even senes-
cent T cells exhibiting a pro-inflammatory profile, such as increased IL-
6 and TNF-a [73e75]. Overall, these changes lead to impaired
functional responsiveness of the aged immune systems to emerging
antigens, such as SARS-CoV-2 [76,77]. Interestingly, some CD4þ

(especially naive and central memory) T cells can elongate their
telomeres by acquiring telomere-containing vesicles from antigen-
presenting cells (APCs), thus gaining protection from immunose-
nescence and conferring long-lasting immune response [78].
However, it remains to be studied if the vesicle-mediated telomere
acquisition can be harnessed for its therapeutic potential to ameliorate
systemic inflammaging.

2.2.2. Inflammation drives telomere attrition
In multiple pathological conditions of aging, inflammation can also
contribute to telomere attrition. On the tissue level, studies have
demonstrated a direct link between local inflammation and telomere
attrition, including gastritis [79], NAFLD [80], and chronic obstructive
pulmonary disease (COPD) [81]. Chronic inflammation markers, such
as TNF-a and IL-6, are associated with shortened telomeres in non-
cancerous cells [82], though this association in malignant cells is
less understood [83]. TNF-a, specifically, has been shown to exhibit a
causal role in downregulating telomerase activity through downstream
phosphorylation of ATF7 by p38, resulting in accelerated telomere
shortening associated with aging in mice [84]. The oxidative stress
resulting from age-associated mitochondrial dysfunction and ROS
production can also accelerate telomere shortening by generating
irreparable single-strand breaks in telomere regions [85,86], which in
itself can incite more inflammation. Similarly, ROS produced by neu-
trophils when fighting pathogens facilitates the spreading of telomere
attrition and senescence to neighboring non-immune cells through
paracrine signaling [58]. In addition, age-associated inflammation
depletes cellular NADþ levels, thus limiting the availability of Sirts
[87e89]. Reduced NAD þ levels may downregulate Sirt6 activity,
lowering telomere stability and increasing attrition [65,66,90]; how-
ever, further research is needed to further characterize this mecha-
nism as direct or indirect.
Type I IFNs, pro-inflammatory cytokines secreted during viral infection,
are drivers for T cell senescence [91] and have also been shown to
inhibit telomerase activity and promote telomere erosion in stimulated
CD8þ T cells [92] and CD4þ T cells [93]. Specifically, IFN-a is
suggested to inhibit human telomerase reverse transcriptase (hTERT)
activity by decreasing activation of NF-kB that can activate hTERT,
despite its pro-inflammatory potential [92] (Figure 2). Persistent acti-
vation of NF-kB, however, contributes to telomere shortening in certain
MOLECULAR METABOLISM 74 (2023) 101755 � 2023 The Authors. Published by Elsevier GmbH. This is an open a
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cell types, including muscle stem cells (MuSCs) and hepatocytes
[94,95].

2.3. Epigenetic alterations
The interconnection between epigenetics and inflammaging is an
important area in contemporary aging research. Age-associated
epigenetic modulations are increasingly shown to favor the forma-
tion of a pro-inflammatory environment, which can, in turn, remodel
epigenetic patterns [96]. Changes in DNA methylation and histone
modifications during aging can lead to inflammatory consequences,
while age-dependent alterations in non-coding RNA (ncRNA) and ret-
rotransposons (RTPs) [97] can regulate genes involved in inflam-
maging, exhibiting potentials for novel therapeutic targets for ARDs
[98].

2.3.1. DNA methylation
Aging has been associated with abnormal patterns of DNA hypo- and
hypermethylation at promoter CpG islands [96,99]. The DNA hypo-
methylation during aging can be partially attributable to the decreased
activity of DNMTs, such as DNMT-1 and DNMT-3B [100] (Figure 2).
During aging, loss of DNA methylation usually activates genes involved
in inflammatory responses, such as NF-kB signaling, macrophage
activation, and IFN signaling [101]. Age-associated DNA hypo-
methylation, caused by tissue necrosis and incomplete clearance of
apoptotic cells, also impacts cell-free DNA (cfDNA) [102]. The unme-
thylated cfDNA resembles microbial DNA, as sensed by DNA-sensing
receptors, such as cGAS and toll-like receptor (TLR)-9, leading to in-
flammatory responses [103].
However, persistent inflammation can also contribute to aberrant DNA
methylation. Recently, a large multi-ethnic epigenome-wide associa-
tion study suggests that the altered CpG methylation patterns can
result from elevated C-reactive protein (CRP) during chronic inflam-
mation. This inflammatory methylation signature can significantly in-
crease the risk for cardiometabolic diseases and COPD [104]. At the
molecular level, oxidative stress triggered by chronic inflammation can
relocalize DNMTs to guanine and cytosine-rich regions, causing DNA
methylation in potentially undesirable genes [105]. For example, DNA
hypermethylation at the promoter regions of autophagy-related 5
(ATG5) or microtubule-associated protein 1A/1B-light chain 3 (LC3-B)
can downregulate autophagy in aging murine macrophages [106].
Inflammaging can also alter epigenetic patterns in several chronic
diseases, including neurodegeneration [107], ulcerative colitis [108],
Helicobacter pylori infection [109], and hepatitis [110].

2.3.2. Histone modification
The N terminal tails of the four core histones (H2A, H2B, H3, and H4) are
subjected to post-translational modifications, including acetylation,
methylation, and phosphorylation, and depending on histones residues
and modification types, gene transcription can be activated or repressed
[100]. The activated, accessible euchromatin is associated with
increased acetylation and trimethylation of histone H3 lysine (H3K)-4,
H3K-36, and H3K-79, whereas transcriptionally inactive heterochro-
matin has low acetylation and increased methylation of H3K-9, H3K-27,
and H4K-20 [111]. Specifically, the global increase of H3K-27me3 in
multiple tissues of various organisms has been newly identified as a
common epigenetic signature of aging [112]. Generally, inflammatory
genes are activated and repressed by histone acetyltransferases (HATs)
and histone deacetylases (HDACs), respectively [113]. Correspondingly,
cell senescence can be delayed via the inhibition of HATs and induced by
inhibiting HDACs [114e116].
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During aging and cell senescence, profound chromatin rearrangement
can occur and cause global heterochromatin loss [96,117]. Compro-
mised chromatin architecture at specific domains, including centromere,
telomeres, and retrotransposons, results in chromatin relaxation, reac-
tivation of deleterious genes, and genomic instability that fuel a pro-
inflammatory environment [118,119]. For example, Sirt6 shows HDAC
activity at H3K-9 and H3K-56, while Sirt6-deficient mice exhibited not
only genomic instability and shortened lifespan but also accumulation of
LINE1 cDNA, which triggers type I interferon response via cGAS-STING
[90,120]. Aging is also associated with a global reduction in histone
trimethylation at H3K-9me3, which is implicated in suppressing the
reactivation of human endogenous retrovirus (HERV) [121,122]. Indeed,
human endogenous retrovirus-K (HERV-K) is found to increase in pa-
tients with AD and cause subsequent neurodegeneration and microglial
accumulation through TLR-8 activation [123,124]. Notably, HERV-K can
also drive cell senescence through cGAS-STING activation [125], further
emphasizing the causal role of DNA hypomethylation in inflammaging.

2.3.3. microRNAs (miRNAs)/non-coding RNA
Micro-ribonucleic acids (miRNAs) are small, non-coding RNAs that
bind to the 30 untranslated region of messenger RNA (mRNA) and
regulate gene expression [126]. miRNAs can act as either repressors
or activators of gene expression, depending on the target mRNA and
the miRNA’s corresponding seed sequence [126]. By doing so, miRNAs
regulate aging by altering the expression of genes involved in the aging
process, such as those involved in DNA damage repair, cell cycle
control, and apoptosis. miRNAs can also regulate inflammation by
targeting cytokines and other molecules involved in inflammatory
pathways. This miRNA subset has been coined “inflammamiRs” owing
to their ability to influence NF-kB/NLRP3 and IL-6 inflammatory
pathways (particularly miR-21e5p and miR-146a-5p) [127].
In addition, miRNAs can interact with epigenetic machinery, such as
DNA methylation and histone modification, to modulate gene expres-
sion and aging-related processes. For example, miR-17 mediates
DNMT-1 downregulation in neurotoxin-induced PD and leads to an
aberrant DNA methylation pattern in PD [128]. Therefore, miRNA may
serve as a promising therapeutic target for ARDs, including neurode-
generative disease [129], CVD [130], degenerative musculoskeletal
disease [131], metabolic disease [132], and ovarian aging [133].

2.4. Loss of proteostasis
Protein homeostasis, or “proteostasis,” is a network of intra- and
extracellular interactions that ensure the proper translation and folding
of newly synthesized proteins, as well as the refolding and degradation
of misfolded proteins [134]. Derangement of proteostasis, such as by
proteasomal deregulation [135], is a primary manifestation of aging,
underlying several ARDs [134]. A growing body of evidence indicates
that immune reactions are induced by proteostatic stress, and excessive
inflammation may contribute to the age-related decline in proteostasis
[136], indicating that proteostasis and inflammation are mutually
influenced [137]. With aging, both aspects of proteostasisdfolding and
degradationdare reduced, resulting in an accumulation of damaged
proteins and organelles, termed “garb-aging,” which can exacerbate
inflammaging (Figure 2) [138].

2.4.1. Reduced proteostasis promotes inflammation
During aging, the robustness of the proteostasis network is challenged
by continuous exposure to mutagens that cause misfolded proteins and
damaged organelles, such as mitochondria [139]. The perturbed pro-
teostasis can promote inflammation as misfolded proteins form pro-
teotoxic aggregates, which initiate excessive unfolded protein response
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(UPR) through activation of the inositol-requiring transmembrane kinase/
endoribonuclease 1a (IRE1a), the activating transcription factor 6
(ATF6), and the protein kinase R-like endoplasmic reticulum kinase
(PERK), eventually leading to NF-kB activation [140,141]. The dysre-
gulation of UPR in immune cells thus contributes to multiple pathologies,
including autoimmunity and metabolic disorders [142]. Proteotoxic ag-
gregates also can be recognized, as damage-associated molecular
patterns (DAMPs), by pattern-recognition receptors (PRRs) like TLRs and
nod-like receptors (NLRs), leading to the assembly of the NLRP3
inflammasome, increased IL-18 and IL-1b secretion by caspase-1
cleavage [143], and eventually pyroptosis-mediated cell death [144].
These deleterious effects can be amplified in postmitotic cells, such as
neurons and cardiomyocytes, which are not actively dividing to dilute
cellular debris into daughter cells, increasing inflammaging [145].
Proteostasis depends on the proper functioning of proteolytic systems,
namely, the ubiquitin-proteolytic system (UPS) and the autophagy-
lysosome system (ALS) [134]. However, as cells age, damaged
cellular content accumulates and overwhelms the cellular proteolytic
systems, contributing to diverse types of tissue inflammation, such as
the neuroinflammation in PD [146] and senescence-associated secretory
phenotype (SASP)-induced inflammation [147]. Reduced proteasome
function also can potentially lead to proteasome-associated auto-
inflammatory syndrome (PRAAS), characterized by prominent type I IFN
gene signatures [148]. In mice with T cell-specific knockout of Rpn13, a
ubiquitin receptor critical for proteasome induction, there is a marked
increase in programmed cell death protein 1 (PD-1)þCD44highCD4þ T
cell frequency upon TCR stimulation, accompanied by profound pro-
duction of pro-inflammatory cytokines and chemokines [149]. Besides
UPS dysfunction, impaired ALS function, as seen in age-dependent
downregulation of autophagy genes [106,150], can also contribute to
inflammaging (discussed in depth in Disabled Macroautophagy).

2.4.2. Inflammation impairs proteostasis
Systemic and chronic inflammation during aging can deregulate pro-
teostasis via multiple mechanisms, undermining both protein folding
and degradation. The inflammation-induced ER stress can activate
UPR, thus altering the protein synthesis/folding arm of proteostasis by
1) PERK-dependent phosphorylation of eukaryotic translation initiation
factor 2 (eIF2a) to hinder translation of misfolded protein; and 2)
decreasing influx of translated proteins into the endoplasmic reticulum
(ER) by degrading ER membrane-associated mRNAs with regulated
IRE1a-dependent decay (RIDD) [151]. Inflammation in itself can lead to
increased levels of ROS and oxidative stress [137,152], which impair
protein folding by exposing hydrophobic cores that facilitate the for-
mation of misfolded, cytotoxic, and degradation-resistant protein ag-
gregates [153,154]. In addition, “oxi-inflamm-aging,” a newly coined
aging pathology [155], describes that oxidative stress elicited by
inflammation promotes the accumulation of a variety of proteotoxic
cellular products, including lipofuscins, advanced glycation end-
products (AGEs), Tau protein aggregates, a-synuclein fibrils, and b-
amyloid, all contributing to deregulated proteostasis [138]. Specifically,
lipofuscin, a type of highly oxidized and cross-linked protein or lipid
aggregate, contributes to the failure of lysosomal enzymes and inef-
ficient clearance of autophagosomes [134], leading to enhanced
inflammation, ROS production, and even senescence in postmitotic
cells, such as cardiomyocytes [156].
In the presence of oxidative stress or chronic inflammation, TNF-a and
IFN-g can promote the conversion of normal proteasome into an
inducible isoform, or “immunoproteasome” (IP) [157]. IP is constitu-
tively expressed in hematopoietic cells and participates in antigen
processing for the presentation by major histocompatibility complex I
his is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
www.molecularmetabolism.com

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.molecularmetabolism.com


(MHC I) molecules. It can degrade oxidized proteins more efficiently,
thus playing a critical role in cytokine signaling and proteostasis [148].
However, the IP can also promote pro-inflammatory T helper 1 (Th1)
and T helper 17 (Th17) cells and suppress the Tregs cells [157], while
malfunctioning of the IP is involved in the development of autoimmune
diseases [158,159] and accelerated aging [160,161], indicating that
inflammation and derailed proteostasis is interdependently contrib-
uting to the pathogenesis of aging.

2.5. Disabled macroautophagy
Due to its increasingly broad importance in aging, macroautophagy has
emerged as its own hallmark of aging, despite its strong connection to
proteostasis [6]. With autophagosome-lysosome fusion, macro-
autophagy processes not only protein cargos but also non-protein
macromolecules (including lipid vesicles and glycogen) and organ-
elles (such as “mitophagy” for mitochondria, “ribophagy” for ribo-
somes) [162], thus controlling cytoplasmic quality, cellular
metabolism, as well as innate and adaptive immunity [163]. However,
a general decline in autophagy function, which has different subtypes
such as macroautophagy, microautophagy, and chaperone-mediated
autophagy (CMA), is observed in older individuals to accelerate aging
by promoting chronic inflammation [164]. Therefore, this section fo-
cuses on how diverse crosstalk, beyond the scope of macroautophagy,
between chronic inflammation and autophagy can contribute to
inflammaging (Figure 2).

2.5.1. Autophagy removes sources of chronic inflammation
The reduction of autophagic flux can contribute to poor cytosolic quality
through the accumulation of protein aggregates, cytosolic DNA,
dysfunctional organelles, and reduced elimination of pathogens e all
of which contribute to inflammation signaling [165]. Thus, a failure of
adequate autophagy often manifests as dysregulated inflammation in
animal models and human diseases [166] through the accumulation of
cytosolic protein aggregates and condensates [167], which act as
DAMPs [168]. Given that microbes, damaged organelles, and organic
or inorganic crystals are all sources of inflammatory signals (PAMPs
and DAMPs), the cytoplasmic clean-up function of autophagy is typi-
cally anti-inflammatory in cells capable of activating cell-autonomous
inflammatory responses [166]. For instance, CMA is recently found to
assist in removing palmitoylated NLRP3, thus preventing sustained
inflammation in human and mouse macrophage models [169]. The
age-related decline in CMA function is associated with increased
NLRP3 activation and IL-1b secretion, leading to vascular inflammation
and accelerated atherosclerosis progression [170].
A declining capacity to remove damaged organelles also contributes to
inflammaging. For instance, “MitophAging” refers to the age-related
pathogenesis resulting from the loss of mitophagy [171]. Aging hu-
man CD4þ T cells are found to be burdened with declining mitophagy,
shown as accumulating autophagosomes consisting of undigested and
damaged mitochondria, which stimulate ROS generation and the NF-
kB pathway, triggering chronic inflammation, immunosenescence, and
dysfunctional adaptive immunity in older individuals [172]. As well,
immunosenescence can be ameliorated by autophagy during aging. In
old human B cells, spermidine-induced synthesis of the autophago-
somal and lysosomal master regulator, transcription factor EB (TFEB),
leads to enhanced autophagy and reversed B cell senescence [173].
However, although autophagy plays a crucial role in removing se-
nescent cells [174], it is worth noting that autophagy may also provide
building blocks for SASP during some forms of senescence, thus
complicating the relationship between autophagy and age-related
senescence [175].
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Notably, caloric restriction-mimetic therapies, such as metformin
[176], rilmenidine [177], rapamycin, and “rapalogs” [178], as well as
senolytic drugs [179,180], are proposed to exert anti-inflammaging
effect by activating autophagic processes, including mitophagy and
CMA, thus promoting the proper disposal of damaged cellular com-
ponents, which can otherwise trigger a cascade of inflammatory
pathways [138]. The mechanistic target of rapamycin 1 (mTORC1),
located on lysosomes, is of particular interest as a modulator linking
metabolism, autophagy, inflammation, and aging biology (see the
section on Deregulated nutrient sensing).

2.5.2. Chronic inflammation impairs autophagy
Chronic inflammation is also understood to impair autophagy. This
effect is often seen in neurodegenerative disorders such as PD [181],
AD [182], Huntington’s Disease [183], and Amyotrophic Lateral Scle-
rosis [184]. The role of neuroinflammation in impairing efficient
autophagy was demonstrated as lipopolysaccharide (LPS)-induced
inflammatory stress substantially increased cytokine production (IL-
1b, TNF-a, and IL-6) and decreased the levels of autophagy markers
(Beclin-1, p62, and LC3 II) [185]. Similarly, TNF-a can inhibit microglial
autophagy via the mTOR pathway, while enhanced autophagy can
promote microglial M2 polarization, promoting the resolution of
inflammation in PD [186]. Recent studies also suggest that microglia-
induced neuroinflammation can promote the accumulation and
transmission of a-syn and Tau proteins to aggravate PD and AD,
respectively [187]. Specifically, constitutive microglial activation, for
example, by LPS, can increase a-syn accumulation and transmission
to the substantia nigra and striatum, leading to increased autophagy
burden and worsened PD [188e190]. In a murine AD model, consti-
tutive activation of microglial NF-kB exacerbates Tau seeding and
spreading in young PS19 mice, while NF-kB inactivation rescues
microglial autophagy [191]. Taken together, chronic inflammation
impacts autophagy and may be particularly relevant in the proteino-
pathies conferred by aging.

3. ANTAGONISTIC HALLMARKS

The antagonistic hallmarks are a response to damages caused by the
primary hallmarks. Initially, the response helps mitigate the damage
and has benefits. However, incidentally or with prolonged pathway
stimulation, the mechanisms become harmful, contributing to the
aging process.

3.1. Deregulated nutrient sensing
Nutrient sensing is essential in regulating the aging process. Current
evidence suggests prolonged overnutrition accelerates aging, while
caloric restriction favors longevity [192]. In addition, nutrient sensing
can be deregulated under pathogenic conditions, including multiple
metabolic illnesses associated with chronic, low-grade inflammation,
such as T2D and atherosclerosis, common chronic diseases of age.
Classical pathways that regulate nutrient sensing include the insulin
and the insulin-like growth factor 1 (IGF-1) signaling pathways
(collectively known as the IIS pathway), the mTOR pathway, the AMPK
pathway, and the Sirts. This section will focus on the bidirectional
relationships between the deregulation of these pathways and the
chronic inflammation that compounds the aging process and related
pathology (Figure 2).

3.1.1. IIS deregulation induces inflammation
During aging, the IIS pathway can be deregulated and mediate chronic
inflammation. Aging is usually associated with declined insulin
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clearance, leading to hyperinsulinemia and insulin resistance (IR) in
peripheral metabolic tissues [193,194]. IR also induces dyslipidemia,
represented as high plasma levels of triglycerides and free fatty acids
(FFAs) [195]. Triglycerides and FFAs can trigger macrophage inflam-
matory responses by inducing NF-kB, culminating in a pro-inflammatory
environment that worsens IR [196]. Chronic hyperinsulinemia and
elevated FFA also support chronic mTOR activation [197], a major driver
of glycolysis in immune cells [198]. Increased glycolysis in innate im-
mune cells can facilitate M1-like macrophage polarization with cytokines
linked to inflammaging, like TNF, IL-1, and IL-6 [199]. In addition, insulin
inhibits forkhead box protein O1 (FoxO1) activity, while FoxO1 deficiency
impairs proteostasis in aged T cells and causes pro-inflammatory,
senescence-like phenotypes [200].
Insulin itself can also directly act on the immune system to fuel
inflammaging. For instance, insulin receptor signaling has been shown
to acutely promote murine immune cell functions, including T cell
effector responses, through supporting nutrient uptake and glycolytic
capacities, key metabolic necessities of inflammation [201,202]. In
addition, mice deficient in insulin receptors in T regulatory (Tregs) cells
are protected from age-induced glucose intolerance and adipose tissue
inflammation, highlighting an inflammatory role for insulin in altering
Treg responses [203]. Interestingly, age-associated B cells (ABCs), a
T-bet þ memory-like B cell subset linked with increased autoimmune
diseases and aging in mice [204,205], can promote inflammatory T
cells potentially through increased glycolysis [206,207], though it re-
mains unknown if insulin/IGFs is a necessary input. Thus, the immune
homeostasis supported by proper IIS signaling is likely essential,
especially in the elderly, who have a higher susceptibility to infectious
diseases and lower capacity to generate adaptive immune responses
against pathogens, such as SARS-CoV-2 and vaccination [2,208].
Altogether, IIS deregulation may form a vicious loop that fuels both
inflammatory processes and potential changes linked to immunose-
nescence, exacerbating ARDs.

3.1.2. mTOR pathway deregulation induces inflammation
The mTOR kinase is essential in maintaining metabolic homeostasis by
sensing amino acid levels and modulating insulin signaling [209].
mTOR in mammals exists within the mTOR complex 1 (mTORC1) and 2
(mTORC2). mTORC1 responds to IIS signaling through Akt (protein
kinase B), senses amino acid abundance, and controls cell growth and
senescence [210]. At the same time, mTORC2 can be activated
through insulin-like growth factor receptor (IGFR)- and insulin receptor
substrate (IRS)-mediated signaling, controlling metabolism and actin
organization [211]. When triggered by prolonged IIS signaling,
mTORC1 can be hyperactivated, while several ARDs, including T2D,
have mTORC1 hyperactivation as a risk factor [212,213], which fuels
inflammation and accelerates aging progression [214]. The chronic,
low-grade inflammation induced by mTORC1 hyperfunction and its
resulting inhibitor of nuclear factor-kB (IkB) kinase b (IKKb) over-
activation (Figure 2) [215,216] is associated with decreased lifespan
[217]. Reducing mTORC1 signaling and its associated tissue inflam-
mation can also benefit tissue healthspan in aging mice [218],
whereas mice with constitutive mTORC1 overactivation showed
accelerated aging that can be rescued by rapamycin treatment [219].
The mTOR signaling also impacts aging progression by modulating
inflammation through cellular senescence and immune cell responses
[209,220]. mTORC1 inhibition with rapamycin can blunt the production of
pro-inflammatory and pro-oxidant products from senescent cells exhib-
iting SASP [221,222]. In murine macrophages, reduction of mTORC1
through Raptor (regulatory-associated protein of TOR) knockdown de-
creases inflammatory gene expression, and overexpression of mTORC1
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signaling through knockdown of mTORC1 inhibitor, TSC1 (Tuberous
Sclerosis 1), leads to elevated glycolysis and shift to pro-inflammatory
M1-like macrophages [223,224]. Intriguingly, in healthy aging in-
dividuals, mTORC1 blockade exhibited enhanced antiviral immunity to-
ward influenza infection [225]. This data is especially significant under the
ongoing pandemic of coronavirus disease 2019 (COVID-19), which in
itself increases mTORC1 activity [226]. Thus, manipulation of mTOR
signaling may provide a novel intervention to enhance the adaptive im-
munity in aging individuals and reducemortality from viral infections, thus
providing a potential axis to improve human longevity [227].

3.1.3. AMPK-sirtuin pathway deregulation induces inflammation
By acting in the opposite direction to the IIS and the mTOR pathways,
the AMPK-sirtuin pathway signals nutrient scarcity and catabolism.
The AMPK pathway is activated by an increased AMP:ATP ratio during
starvation or caloric restriction [228], while sirtuins are a family of
(NADþ)-dependent deacetylases [229]. Mechanistically, AMPK acti-
vation can increase the cellular NAD þ concentration, leading to the
expression of Sirt1 that deacetylates the liver kinase B1 (LKB-1), an
upstream activator of AMPK [230], forming a positive feedback loop
(Figure 2). Functionally, AMPK activation can inhibit mTORC1 by
activating TSC1/2 and stimulate Sirts to deacetylate FoxOs or
autophagy-related proteins (ATG5 and ATG7) [231,232], leading to 1)
enhanced expression of PGC-1a for better mitochondrial biogenesis
[233] and 2) inhibition of cytoplasmic p53 for autophagy [234,235].
Recently, AMPK is also found to directly phosphorylate folliculin-
interacting protein 1 (FNIP1), which forms a complex with folliculin
to suppress the complex’s function; through this interaction, AMPK is
able to promote TFEB-mediated autophagy and induce lysosomal and
mitochondrial biogenesis [236]. Of note, metformin, an AMPK acti-
vator, normalizes mitochondrial function and alleviates age- and
senescence-associated inflammation by enhancing T cell autophagy
[237]. Therefore, the AMPK-Sirt pathway plays an important role in
regulating chronic inflammation.
As seen in the decreased NAD þ level and the associated metabolic
dysfunction during aging, the declining AMPK-Sirt responsiveness with
age is gaining increasing attention for its proinflammatory potential
[238e240]. Sustained AMPK activation is essential for the survival and
functions of both human and murine in vitro induced Treg cells [241]. In
line with Tregs’ function in inhibiting chronic inflammation induced by
self-antigens in aged persons [242], mice with Treg-specific AMPK
deletion developed autoimmune and inflammatory liver diseases [243].
In murine macrophages, AMPKa1 deletion induces M1 hyperpolarization
upon LPS challenge, whereas metformin increases IL-10 and reduces
IL-6 and IL-12 secretion in wild-type M1 macrophages [244]. Loss of
AMPK in other tissues also causes inflammation and age-associated
pathologies, such as NAFLD [245] and chronic kidney disease [246].
Similarly, loss of Sirt6 in the aging mouse brain leads to decreased
mitochondrial function and increased ROS production that potentiates
inflammaging [247]. In contrast, an intact AMPK-Sirt pathway can
suppress NLRP3 (Figure 2), thus quenching chronic inflammation and
contributing to a healthier aging process [248e250]. In murine he-
matopoietic stem cells (HSCs) with age-related defects in autophagy,
Sirt3 can restore mitophagy, reduce oxidative stress, and slow aging
progression [251]. This evidence indicates that the AMPK-Sirt pathway,
if deregulated during aging, can cause profound disruption in energy
homeostasis and aberrant inflammatory responses.

3.1.4. Inflammation deregulates the IIS pathway
Local and systemic inflammation accompanying aging and ARDs can
also deregulate nutrient-sensing pathways [252]. Aging deregulates
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the IIS pathway by promoting a pro-inflammatory environment in
metabolic tissues, such as adipose tissues [253,254], muscles [255],
and digestive tracts [256,257]. This chronic, low-grade metabolic
inflammation is characterized by increased FFAs, ROS, and UPR linked
to ER stress, which can activate the JNK pathway, mediating the serine
phosphorylation of IRS1/2 and thus blockade the IIS pathway [258].
Likewise, older mice express higher levels of inflammatory markers,
such as TNF-a and IL-1b in skeletal muscles [259], leading to acti-
vated IKKb/NF-kB pathway that phosphorylates IRS1 and contributes
to IR [260] (Figure 2). Notably, the reduction of inflammation is
implicated in the extension of life/health span observed under caloric
restriction. For example, methionine restriction (MR) has been found to
reduce basal levels of serum IGF1 and glucose, associated with
downregulation of multiple pathways with pro-inflammatory potential,
such as TNF signaling via NF-kB, IL-6, and JAK/STAT3 signaling in
LmnaG609G/G609G mice, a mouse model of HutchinsoneGilford progeria
syndrome (HGPS) [261]. Similarly, inhibiting methionine catabolism by
the pluripotency factor NANOG in LmnaG609G/G609G mice restores in-
sulin sensitivity, glucose uptake and glycolysis, and significantly en-
hances the force-generating ability of aged mice [262].
In digestive tracts, especially the gut, recent studies indicate that
microbial dysbiosis can increase with aging in the elderly, where pro-
inflammatory commensal bacteria are enriched at the expense of
beneficial microbes [263,264]. A pro-inflammatory gut environment
due to dysbiosis, such as with aging, can worsen IR in mice by
increasing gut permeability, facilitating bacterial product leakage into
circulation, which contributes to chronic inflammation in tissues,
including in the intestine [265,266]. Chronic inflammation, in turn,
interferes with the IIS signaling, propelling age-related metabolic
diseases [257,267]. A mucosal source of inflammation may also be
related to altered IgA responses with age, as IgA is one link governing
inflammation associated with the impairment of nutrient-sensing
pathways [268,269].
Remarkably, the insulin receptor can also function through multiple
non-canonical pathways, such as acting as a transcription factor by
binding to gene promoters [270], controlling senescence through a
ligand and tyrosine kinase-independent (LYK-I) pathway [271], and
modulating hepatocyte and adipocyte functions by forming dynamic
clusters on the cell surface [272]. Since all these pathways are
interrupted in insulin-resistant cells or by ROS accumulation [272],
future work is needed to tease out precise mechanistic connections
between their deregulation and metabolic inflammation in aging
populations.

3.1.5. Inflammation deregulates the mTOR pathway
Characterized by increased levels of pro-inflammatory cytokines,
particularly IL-1b, IL-6, and TNF-a [273], inflammaging also feeds into
the deregulation of the mTOR pathway. Pro-inflammatory cytokines
resulting from age-induced ER stress can interact with mTORC1,
perturbing its normal function and expediting aging. For example,
IKKb, a downstream effector of the TNF-a pathway activated during
aging [274], has been shown to phosphorylate and inhibit TSC1
directly, constitutively activating mTORC1 [275]. Consequently,
mTORC1/S6K hyperactivation promotes IRS1 degradation and gener-
ates a feedback inhibition of the phosphatidylinositol-3-kinase (PI3K)/
Akt pathway, leading to peripheral IR (Figure 2) [276,277]. In addition,
viral infection and chronic inflammation during aging can activate
nucleic acid sensors, such as cGAS, retinoic acid-inducible gene I (RIG-
I), and anti-melanoma differentiation-associated gene 5 (MDA5) [278e
280], whose downstream target, TBK1, has been shown to activate
mTORC1 [281] directly and activate mTORC2 signaling indirectly [282].
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The inflammaging-induced deregulation of mTOR signaling is also
observed in aged murine peritoneal macrophages (PM). With metab-
ololipidomics and proteomic profiling, a recent study found a signifi-
cant upregulation of pro-inflammatory pathways, such as integrin
signaling, mTOR, NF-kB, NO and ROS production, p38 MAPK and
TNFR1/2 signaling in old M2a-PM [283]. These changes are accom-
panied by a downregulation of pathways for inflammatory function of
M1 macrophages, such as glycolysis, nuclear factor erythroid 2-related
factor 2 (NRF2), and hypoxia-inducible factor 1-alpha (HIF-1a)
signaling [283], indicating that the dichotomy of pro-inflammatory
(M1-like) and pro-resolving (M2-like) macrophages during inflam-
maging can be metabolically obscure.
Interestingly, sestrins (SESNs), a family of stress-inducible proteins,
are emerging as metabolic regulators that inhibit inflammaging mainly
through activating AMPK and inhibiting mTORC1 [284,285]. For
example, SESN1/2 inhibits liver mTORC1 signaling in a leucine-
sensitive manner, thus ameliorating age-induced reduction in keto-
genesis [286,287]. However, SESNs themselves also can be a target
reduced during inflammation, leading to mTOR hyperactivation [288].
For example, the induction of SESN2 has been shown to require the
PI3K/Akt pathway, which is frequently obstructed during inflammaging
and obesity due to IRS1 serine phosphorylation [289]. In support of
this, SESNs levels are lower in healthy aging men than younger men
[290], while SESN1-SESN2-knockout mice showed hyperactivation of
mTORC1 in aged knockout mice [291]. However, how inflammation
directly alters SESNs expression warrants further research. These
findings indicate that inflammation can exert a potent impact on aging
physiology through cytokine-mTOR interaction and crosstalk with other
components in age-associated stress responses.

3.1.6. Inflammation deregulates AMPK-sirtuin pathway
Although the AMPK pathway integrates the IIS, mTOR, and Sirt path-
ways, acting as a master regulator of metabolism and inflammation,
inflammaging can also reversely impose a profound impact on the
AMPK-Sirt pathway by preventing it from maintaining proper energy
homeostasis. The activation capacity of this pathway declines under
age-induced ER stress, oxidative stress, and chronic inflammation
[238,292,293], while high glucose/lipids/amino acid levels, LPS, and
pro-inflammatory cytokines, such as TNF-a and NF-kB, can also
inhibit AMPK activity [294e296]. Particularly, LPS can mediate
inflammation by dose-dependently facilitating AMPK dephosphoryla-
tion [297]. Intriguingly, AMPK exhibits viral-sensing capability by
directly phosphorylating TBK1 and promoting type I interferon gene
expression in response to viral nucleic acids detected by the cGAS-
STING pathway [279,298]. The genetic ablation of AMPK reduced
Sendai virus sensing and damage-induced DNA sensing, underlying a
compromised innate immunosurveillance [298]. Thus, during aging,
which may be linked to increased circulating bacterial and viral
products, an inflammatory environment can distort AMPK signaling,
reducing the beneficial effects of AMPK-dependent autophagy, mito-
chondrial biogenesis, and antiviral immune responses, the reduction of
which are all linked to frailty and chronic disease in the elderly.
Moreover, age-associated metabolic inflammation can deplete NADþ,
leading to age-dependent loss of Sirt activity [88,89,299]. Meanwhile,
reduced Sirt1 reduces mitochondrial biogenesis, reduced mitochon-
drial Sirt3 reduces mitochondrial antioxidant and repair systems, and
reduced NAD þ may also impair Sirt2, enhancing NLRP3 inflamma-
some activity [22]. Thus, inflammaging can induce a positive feedback
loop through altered Sirt function to drive ROS production, mitochon-
drial dysfunction, and more inflammation. In addition, as a natural by-
product of amino acid metabolism and urea cycle, ammonia levels in
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the brain increase with age, contributing to neuroinflammation through
p38 MAPK/NF-kB pathway and bloodebrain-barrier breakdown [300].
In human and murine skeletal muscle/myotubes, hyperammonemia
can inhibit the mitochondrial electron transport chain complex I that
oxidizes NADH to NADþ, leading to a lower redox ratio, Sirt3
dysfunction, and postmitotic senescence in myotubes, accompanied
by increased acetyleNFekB p65 expression, an activating post-
translational modification [301]. Thus, multiple metabolic mecha-
nisms contribute to Sirt decline with age.
Collectively, the major nutrient-sensing pathways, including the IIS,
mTOR, Sirts, and AMPK pathways, orchestrate the physiology of
longevity. Their deregulation, as a hallmark of aging, fuels the meta-
bolic inflammation that impacts the healthspan and lifespan of aging
populations. Early detection of immunometabolic dysregulation with
multi-omics approaches, such as lipidomics, metabolomics, and gly-
comics [302], permits the early diagnosis of metabolic and ARDs and
represents a future direction of personalized geroprotective
treatments.

3.2. Mitochondrial dysfunction
Mitochondria developed through the merging of a prokaryotic organism
into a eukaryotic cell [303]. From these origins, mitochondria maintain
their own DNA (mtDNA) and DNA replication process. They act to
supply the cell with ATP and synthesize key molecules in the processes
of inflammation, oxidation, and metabolism. In recent years sur-
mounting evidence suggests that mitochondria not only play an
influential role in the progression of the inflammaging phenotype but
are also heavily impaired by chronic inflammatory states [85]. Indeed,
mitochondrial function declines with aging, and this change is asso-
ciated with increased ROS, reduced ATP production, elevated
mitochondrial damage, and age-related epiphenomena (Figure 2)
[304e306]. While multiple mechanisms link mitochondrial dysfunction
with aging, one such mechanism relates to age-related depletion of
NADþ, which causes loss of efficient sirtuin activity, resulting in
impaired mitochondrial SIRT3. Impaired Sirt3 leads to dysregulation in
mitochondrial antioxidant systems, mtDNA repair, and mitochondrial
quality control and biogenesis pathways [307]. Here, we examine the
reciprocal links between inflammation and mitochondria with age.

3.2.1. mtDNA promotes chronic inflammation
Because of their endosymbiotic origins, mitochondria carry a milieu of
potential DAMPs that may be uniquely immuno-stimulating [308].
Some of the most putative mitochondrial DAMPs include the release of
mtDNA, N-formyl peptides, and unique mitochondrial lipid species
such as cardiolipin [309]. During aging, there is increased mitochon-
drial dysfunction, reduced genome integrity, and damage [310],
allowing for the increased potential of age-related interactions with
mitochondrial DAMPs.
The phospholipid cardiolipin is essential for maintaining mitochondrial
structure and function and normally siloed to the inner mitochondrial
membrane. However, when exposed to the cytoplasm, it stimulates
mitophagy, the process in which dysfunctional mitochondria are
eliminated and new mitochondria are formed [311]. Apoptosis is
precipitated in most severe cases when cardiolipin stimulates the
release of cytochrome c [312]. Mitochondrial proteins, including N-
Formyl peptides, primarily induce inflammation through binding to
formyl peptide receptor-1 [313].
In the case of mtDNA, immune activation can be mediated by TLR
signaling. Indeed, mtDNA binds TLR-9, a receptor capable of detecting
unmethylated DNA with CpG motifs derived from bacteria and viruses
and initiating the innate immune response [314]. Activation of TLR-9
10 MOLECULAR METABOLISM 74 (2023) 101755 � 2023 The Authors. Published by Elsevier GmbH. T
leads to NF-kB signaling, which induces the expression of several
pro-inflammatory cytokine genes [315] and is aberrant in many
chronic diseases [316]. In this way, mitochondria not only contribute to
the transmission of danger signals within the cell but are also a major
source of molecules capable of activating the innate immune system.
For reasons not entirely understood, circulating mtDNA appears to
increase gradually with age after the fifth decade of life [317], and the
abundance of unhoused mtDNA is associated with accelerated aging
pathology [318]. Various inflammatory pathways are activated when
ROS-damaged mtDNA and cardiolipin are released into the cytosol.
Responses that have been best studied involve the NLRP3 inflam-
masome, the cGAS-STING pathway, and NF-kB [309,319]. Cytosolic
mitochondrial RNA has similar effects, stimulating TBK1/IKK and NF-
kB through RIG-1, MDA5, and mitochondrial antiviral-signaling protein
(MAVS) [320]. Mitochondrial damage also activates other inflamma-
somes such as NLRP10, and AIM2 in keratinocytes and macrophages,
respectively [321,322], thus implicating their potential role during
mitochondrial damage-induced inflammation in aging. Finally,
mitochondrial-derived phosphocreatine and ATP can also instigate
inflammation through inflammasome activation or, in the case of ATP,
by also binding extracellular P2X purinoceptor 7 on innate immune
cells [322,323].
In addition to mtDNA and ROS, mitochondrial dysfunction releases TCA
cycle intermediate metabolites into the cytosol with immunomodula-
tory effects [324]. Fumarate has been shown to impose immuno-
modulatory effect through controlling chromatin modifications and
regulating protein succination [325]. Specifically, pro-inflammatory
insults can lead to the accumulation of fumarate through glutamine
anaplerosis which has been shown to be necessary for trained im-
munity and inflammation by inhibiting lysine-specific demethylase 5 A
(KDM5) histone demethylase activity; inhibition of KDM5 increases the
levels of H3K4me3, a marker of active gene transcription at the pro-
moters of TNFa and IL6 cytokines [326]. Furthermore, elevated levels
of succinate, resulting from mitochondrial dysfunction, can potentially
contribute to chronic inflammation by activating the HIF-1a pathway
through stabilization of HIF-1a. Succinate inhibits prolyl hydroxylases,
enzymes responsible for the degradation of HIF-1a. Consequently,
stabilized HIF-1a translocates into the nucleus and initiates the tran-
scription of key inflammatory cytokines, particularly IL-1b [327]. It
remains to be seen if such mechanisms occur during inflammaging.
Itaconate has been shown to inhibit the nuclear factor-kappa B (NF-kB)
pathway, a key regulator of inflammation [328]. Itaconate acts by
directly modifying specific cysteine residues on key proteins involved in
NF-kB signaling, such as IkB kinase (IKK) and Kelch-like ECH-asso-
ciated protein 1 (Keap1). This modification disrupts the activation of
NF-kB and promotes its nuclear export, thereby suppressing the
expression of pro-inflammatory genes. Additionally, itaconate can also
promote anti-inflammatory responses by activating the anti-
inflammatory transcription factor NRF2, which induces the expres-
sion of antioxidant and anti-inflammatory genes including GPX1 and
SOD1 which decrease ROS [328,329]. Itaconate may be induced
during aging inside immune cells like macrophages, where it may act
as a compensatory factor to help dampen inflammation or maintain
tissue homeostasis [330].

3.2.2. Inflammation impairs mitochondrial function
Conversely, chronic inflammation has been shown to impair mito-
chondrial function through inflammasome activation and other
pro-inflammatory immune signaling engagements, such as the
exaggerated generation of ROS, which produce damage in mito-
chondrial proteins, lipids, and mtDNA [331]. An array of ARDs,
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including CVDs, cancer, neurodegenerative disease, and metabolic
diseases, has been linked to mitochondrial dysfunction [332e334].
Similar to DNA damage, mitochondrial machinery, and compartments
accumulate damage over time and rely on repair and replacement
mechanisms to maintain performance. However, instead of repairing
damaged entities, dysfunctional mitochondrial proteins and even entire
organelles are selectively removed through mitophagy [335,336]. This
quality control process selects for healthy mitochondria to replicate and
govern homeostasis. However, both excessive chronic inflammation
and aging impair autophagic mechanisms. For instance, excessive
inflammation due to the NLRP3 inflammasome can trigger CASP1-
dependent mitochondrial damage, ROS production, dissipation of
mitochondrial membrane potential, permeabilization, and inhibition of
mitophagy through cleavage of Parkin [319]. The resultant accumu-
lation of damaged mitochondria leads to uncontrolled ROS and mtDNA
leakage and the ensuing IL-1b- and IL-6-dependent inflammation
orchestrated by cGAS-STING signaling (Figure 2) [337].

3.3. Cellular senescence
Cellular senescence is a state of proliferative arrest in response to cell
stressors [338]. Senescence can be induced by various stimuli,
including DNA damage, oxidative stress, replicative stress, mito-
chondrial signaling, and altered expression of certain oncogenes [339].
Senescent cells remain mechanically intact, metabolically operational,
and involved in intercellular signaling while still arresting growth and
replication. Senescence growth and replicative arrest have been
shown to be mediated by major tumoresuppressor pathways such as
p16INK4a, pRB (retinoblastoma protein), and by p53 [340,341]. Se-
nescent cells and their secretory products are now widely accepted as
important contributors to aging and age-related disease. Cell-specific
effects of cellular senescence and inflammaging have been recently
reviewed elsewhere [342].

3.3.1. Cell senescence and its SASP promotes inflammation
The secretion profile of factors specific to senescent cells has been
termed the “senescence-associated secretory phenotype” or SASP
[343,344]. The SASP is a bioactive secretome thought to promote the
recruitment and activation of immune cells that would clear senes-
cent cells. When clearance fails, the result is the accumulation of
senescent cells and SASP factors which leads to diminished tissue
function and steadily elevated proinflammatory tone. SASP factors
are also thought to be critical mediators of tissue repair [345].
However, they may also potentially facilitate senescence spreading
into neighboring cells [346]. Some of the most robustly induced
secreted pro-inflammatory SASP proteins include, but are not limited
to, IL-6, IL-8, IL-1, granulocyte-macrophage colony-stimulating
factor (GM-CSF), growth-regulated oncogene (GRO)a, monocyte
chemotactic protein (MCP)-2, MCP-3, matrix metallopeptidase
(MMP)-9, �1, �3 and several IGF-binding proteins. SASP factors
that have been proposed to be biomarker candidates of aging include
markers such as growth differentiation factor (GDF)-15, stanniocalcin
1, MMP-1, Inhibin Subunit Beta A (INHBA), and serpin family E
member 1 (SERPINE1) [343,347].
In addition to pro-senescence mechanisms, such as persistent DDR
signaling, GATA4 stabilization, and ensuing NF-kB and C/EBPb cas-
cades [25,348,349], the secretion of SASP factors can also be initiated
or maintained by two microRNAs, mir-146a/b. These microRNAs
orchestrate a negative feedback loop dampening the escalation of NF-
kB activity and maintaining a chronic low-grade inflammatory
phenotype [350]. Despite the induction of mir-146a/b, the SASPs
persist in promoting the low-grade inflammation thought to drive
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chronic pathologies associated with aging [351]. Interestingly, the
genetic determinants of senescence also leads to unique SASPs and
inflammatory profiles. For instance, p21-induced senescence induces
a distinct SASP characterized by C-X-C motif chemokine 14 (CXCL14)
expression, which puts stressed cells under immunosurveillance
[352]. In addition to recruiting immune cells, SASP factors can also
induce markers of aging, such as CD38, on immune cells. Macro-
phages expressing CD38 in aged tissues deplete NADþ, which further
drives aging phenotypes [87,89,299]. Thus, it will be interesting in the
future to map out how underlying instigators of senescence contribute
to specific inflammatory profiles across the chronic diseases of aging
and to better understand distinct impacts on immune cell populations.
Of note, not all SASP immunological factors should be considered
pathogenic with age. For instance, senescent cells can also secrete
factors that stimulate tissue repair and epithelial regeneration [345]. As
a result, the use of senolytics that target senescent cells should be
used with caution, as indiscriminate senolysis can interfere with less
appreciated benefits of senescent cells.

3.3.2. Inflammation promotes senescence
Senescent cells have been shown to accumulate over the life span of
humans and predominantly in renewable tissues and tissues that
experience prolonged inflammation [353,354]. Many inflammatory
diseases, such as atherosclerosis, osteoarthritis, idiopathic pulmonary
fibrosis, and insulin resistance, also show elevations in senescent cells
associated with inflammation [22]. As previously mentioned, molecular
damage, including DNA and structural damage induced by oxidative
stress associated with chronic inflammation, can trigger senescence.
The accumulation of oxidative stress, DNA damage, and even reac-
tivation of HERV can exacerbate inflammation in aging individuals by
activating the cGAS-STING pathway, resulting in increased interferons
or SASP signaling (Figure 2) [125,355]. In addition, as discussed in
section 3.1., mTORC1 signaling mediates the production of various
pro-inflammatory cytokines including IL-1A, while rapamycin can
suppress the translation of the membrane-bound cytokine IL-1A,
leading to diminished NF-kB transcriptional activity and reduced
SASP [356]. Moreover, viral infection, such as by SARS-CoV-2, can
evoke “cytokine storms” characterized as pro-inflammatory cytokines,
particularly in the elderly, and amplify SASP from pre-existing se-
nescent cells. The resulted increase in SASP can further exacerbate
tissue damage in addition to the direct cellular damage due to virus
itself [357]. The innate immune sensing of viral RNA or cytosolic
chromatin fragments associated with aging through cGAS-STING and
its downstream mediators, predominantly IRF3, NF-kB and C/EBPb,
may also promote both induction and spreading of senescence [357e
359].

4. INTEGRATIVE HALLMARKS

The integrative hallmarks arise when the homeostatic machinery of
aging tissues fails to resolve the accumulated damage from the pri-
mary and antagonistic hallmarks [6]. Because of the broad, tissue-
specific etiology underlying the integrative hallmarks, their initiation,
and progression can exacerbate the primary and antagonistic hall-
marks, engendering a large set of age-related pathologies at the
systemic level [360].

4.1. Altered intercellular communication
Intercellular signaling, as a hallmark of aging, encompasses many
modes of cell-to-cell signaling, including endocrine, neuronal, and
neuroendocrine pathways, as well as cell-to-cell contact and the
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exchange of vesicle-packaged and free soluble factors, including in-
flammatory signals [6]. Because of the vast role of aberrant intercel-
lular signaling in aging pathology and the degree to which chronic
inflammation contributes, these two hallmarks were differentiated in
the 2023 Hallmarks of Aging update [6]. Here we briefly highlight links
between chronic inflammation and other forms of intercellular
communication, including hormones and extracellular vesicles.

4.1.1. Hormones and chronic inflammation
In a similar age-dependent manner, secretory patterns of the hormones
produced by the hypothalamicepituitary axis (HPA) [361] and gute
pancreaseliver axis (GPLA) change [362], as does the sensitivity of the
axis response to feedback. The HPA is a master regulator of the body’s
systemic homeostasis, such as energy balance, body temperature,
sleep, blood pressure, and circadian rhythms. Background-level
inflammation in the hypothalamus, concisely termed “hypothalamic
microinflammation,” is thought to contribute to the deviation from ho-
meostasis, particularly metabolic dysregulation, with age and the tonal
systemic inflammation that ensues [363].
In addition to decreased insulin sensitivity and clearance, aging is
associated with reductions in fasting glucagon-like peptide-1 (GLP-1)
and glucose-dependent insulinotropic polypeptide (GIP), which may
predispose to the development of glucose intolerance and T2DM with
age [362]. The consequence of dysregulated insulin is the inflam-
matory reprogramming of immunometabolism and immune cell
function (discussed in the section IIS deregulation induces inflamma-
tion). Furthermore, the age-associated downregulation of sex hor-
mones, estrogen, and testosterone, may also promote inflammation.
Estrogen can induce Th2 responses [364], and testosterone receptors
in T cells promote forkhead box protein P3 (Foxp3) expression and Treg
fates [365].

4.1.2. Extracellular vesicles as mediators of inflammaging
EVs are lipid membrane vesicles derived from multivesicular bodies or
plasma membrane containing proteins, lipids, and nucleotide species,
sharing a snapshot of the donor cell state with the recipient [366].
Released by most cell types, they are a newly appreciated form of
intercellular communication, linking hallmarks of aging through in-
flammatory mediators [367,368]. In cancer and autoimmunity, EVs
promote inflammation [369], for instance, in the delivery of TLR ligands
to plasmacytoid dendritic cells [370]. EVs also exhibit regenerative
potential as stem cell-derived or “young” EVs can improve healthspan,
though they can lose their regenerative potential over time. For
example, mesenchymal stem cell (MSC)-derived small EVs reduce
endothelial cell senescence via delivery of miR-146a [371], while
reduced levels of EVs containing galectin-3 (Gal-3) in aging plasma
donors correlate with a reduced ability to induce osteoblasts from
MSCs [372] and may also potentiate PAMP-TLR responses [373].
Similarly, EVs from young human donors were found to have higher
levels of glutathione-related protein (GSTM2) than old EVs, which
promotes antioxidant activity [374] (Figure 2). EV research is a bur-
geoning field, and the modes by which EVs partake in inflammaging
require further study, including their immunosuppressive role in
expanding senescence [375] and their ability to serve as a biomarker
for age-related conditions [376].

4.2. Stem cell exhaustion
Adult stem cells function as self-renewal pools that facilitate tissue
repair by replacing damaged cells in various tissues and organs [377].
During aging, multiple factors, including telomere attrition, DNA
damage, epigenetic dysregulation, and chronic inflammation, cause a
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decline in both the regenerative and proliferative capacities of stem
cells, leading to stem cell exhaustion and accumulation of senescent
cells [378,379]. Senescent cells can in turn facilitate additional stem
cell dysfunction. For instance, in aged progeroid INK-ATTAC mice,
senescent fat progenitors inhibit adipogenesis in non-senescent pro-
genitors through activin A secretion [380]. Chronic inflammation, even
early in life, can contribute to the depletion of HSCs, causing pheno-
types of premature aging [381], whereas the inhibition of NF-kB
activation demonstrates a functional rejuvenation of aged skeletal
stem/progenitor cells (SSPC) [382]. Meanwhile, senescent cells can
exacerbate stem cell exhaustion via SASP cytokines that favor the
infiltration of immune cells, creating an inflamed niche that further
impedes stem cell function [383e385]. For example, aged skeletal
stem cells (SSCs) become pro-inflammatory and contribute to an
inflamed bone marrow niche, which can promote the dysfunction of
HSCs [386], while aged HSCs can also activate NF-kB, facilitating the
myeloid-skewed differentiation and the eventual loss of self-renewal
[387,388]. Additionally, the regenerative capacity of differentiated
cells in response to injury is also weakened in aged animals, indicating
that the injury-induced cellular plasticity also may be impaired during
aging [389]. Although acute inflammation can provoke somatic
stemness and promote tissue recovery by IL-6-mediated epigenetic
modifications [390], chronic inflammation can lock cells in epigenet-
ically plastic states disabled for reparative differentiation, leading to the
accumulation of damaged cells and even tumorigenesis [391].
Recent advances have illustrated the importance of stem cell-related
factors that rejuvenate tissues by transiently reprogramming somatic
cells. Specifically, the Yamakana factors (Oct3/4, Sox2, Klf4, c-Myc, or
OSKM) can induce aging somatic cells to transiently de-differentiate
into a younger state, after which the somatic identity is regained
with age-related epigenetic patterns erased and cellular functions
rejuvenated [392]. Multiple in vivo and in vitro studies have proved the
efficacy of OSKM- or OSK-mediated transient reprogramming in mu-
rine and human cells, leading to the marked reversal of epigenetic
clocks, reduction in inflammatory profiles, and restoration of lost
functionality in diseased or aged cells [393e395]. Notably, as transient
reprogramming recapitulates features of natural tissue repair, which
often declines with age due to accumulated senescent cells, the
removal of senescent cells by senolysis extends Drosophila lifespan
synergistically with OSKM expression [395]. Other means for stem cell
renewal include fecal microbiota transplantation from young mice to
aged mice, which can enhance hematopoietic repopulation capacity,
thus exhibiting the potential to rejuvenate HSCs [396].

4.3. Dysbiosis
The gut microbiome plays a vital role in maintaining human health
through nutrient digestion and absorption, protection against patho-
gens, and the production of important metabolites such as vitamins, as
well as amino acid and fatty acid derivatives [397]. Dysbiosis refers to
an imbalance in the gut microbiome, which can occur for various
reasons and negatively impact health and serve as a catalyst for fueling
inflammaging. However, the contribution of dysbiosis in the context of
the human microbiome interaction, particularly regarding its impact on
systemic immune function or deterioration of this function among the
elderly as it relates to ARDs, is an ongoing area of research [398]. A
recent study by Galkin and colleagues shows that microbiome profiles
can predict the age of healthy individuals, and patients with T1D exhibit
age acceleration according to the microbiome clock [399]. Further-
more, a growing body of literature implicates age-related dysbiosis of
the gut microbiome as contributing to tissue-specific (such as in the
liver, adipose, and intestine) as well as a global inflammatory state in
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the elderly [257]. Interestingly, besides the gutebrain axis, oral dys-
biosis also plays a role in mediating age-related neurodegenerative
diseases, expanding the term into the “oralegutebrain axis”. Me-
tabolites produced by gut and oral microbes (particularly Streptococcus
mutans and Porphyromonas gingivalis) have been linked to the for-
mation of b-amyloid and its accumulation in the brain, tau protein
phosphorylation, and neuroinflammation in individuals with Alz-
heimer’s disease [400].
Short-chain fatty acids (SCFA), such as butyrate, are considered a
primary microbial anti-inflammatory metabolite that is known to inhibit
the NF-kB pathway [401] and regulate Th17/Treg differentiation by
inhibiting IL-6/signal transducer and the activator of transcription 3
(STAT3)/IL-17 pathway and promoting Foxp3 [402,403]. Faecali-
bacterium prausnitzii has been identified as a butyrate-producing
bacterium with an inverse relationship with different proinflammatory
markers [402].
Another feature of the centenarians’ gut ecosystem is the increase in
facultative anaerobes, such as bacteria belonging to the Micro-
coccaceae family, the Fusobacterium, Bacillus, Staphylococcus, and
Corynebacterium genera, and many members of the phylum Proteo-
bacteria. Such opportunistic microbes, especially the Enterobacteri-
aceae family, thrive in an inflamed environment and are known to
increase in the elderly and are associated with a decrease in
F. prausnitzii [404]. Overall, studies with centenarian populations
typically show reduced core taxa, such as Bacteroides and Roseburia,
associated with increases in Akkermansia and Bifidobacterium, which
may have pro-longevity effects [405]. Akkermansia can be modulated
by local levels of IFN-g [406], a cytokine linked to inflammaging, and
has immunomodulatory effects in the host, possibly through its pili
structures [407]. Other mechanisms by which changes in the gut
Figure 3: Clinical and Molecular Drivers Underlying the Loop of Chronic Inflammat
ronmental triggers, chronic inflammation can drive aging and age-related diseases, whi
DAMPs ¼ deoxyribonucleic acid damage-associated molecular patterns, ER ¼ endoplasm
kappa B, NLRP3 ¼ nod-like receptor family pyrin domain-containing 3, PAMPs ¼ pathog
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microbiota can intersect with aging or immunity include the production
of amino acid metabolites, such as from tryptophan (e.g., indoles that
bind the aryl hydrocarbon receptor [408] and phenylalanine/tyrosine
[409], and through the production of secondary bile acids [410].
Despite these advances, more work, such as through fecal microbial
transplantation studies [411], will undoubtedly improve our knowledge
of mechanisms by which the gut microbiota intersects with the im-
mune system to control healthy aging. A full scope of the recent ad-
vances in characterizing the role of the gut microbiome in aging and
longevity has been systematically reviewed here [412].

5. CONCLUSIONS AND FUTURE PERSPECTIVES

This review highlights the bidirectional relationships between chronic
inflammation and the hallmarks of aging by summarizing the under-
lying molecular mechanisms (Figure 3). Immune dysfunction and
changes in inflammatory pathways are transversal contributors to the
aging process, propagating a rippling effect through the other drivers of
aging. Due to its interconnectedness and ability to accentuate aging,
drivers of chronic inflammation may be the ideal target to address
aging with high translational potential. While their clinical application
and long-term safety remain to be proven in clinical trials, current
evidence suggests that immune-targeting approaches have the po-
tential to revolutionize longevity research and treatment, as they have
done in cancer therapies. Boosting and targeting the immune system
to clear senescent cells is just one example, as we have discussed.
Progress in this field will require technological improvements in the
measurement and analysis of multi-omics and rapid cycles of trans-
lation from model organisms to humans and vice versa to identify new
promising therapeutic targets.
ion and the Hallmarks of Aging: Through various molecular mechanisms and envi-
ch in turn can exacerbate chronic inflammation along with other hallmarks of aging.
ic reticulum, NAD/NADH ¼ nicotinamide adenine dinucleotide, NF-kB ¼ nuclear factor
en-associated molecular pattern molecules, TLR ¼ toll-like receptor.
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As our understanding of aging continues to expand, new hallmarks of
aging will inevitably emerge. Foreseeable future hallmarks of aging
include those linked to the extracellular matrix (ECM) and mecha-
noimmunology, both up-and-coming areas of basic aging science
research [413e415]. Indeed, aging and ARDs are associated with
changes in the ECM and mechanical cell surroundings, including im-
mune cells. Mechanosensing by immune cells, such as through YAP/
TAZ or PIEZO1 signaling [416,417], alters immune cell function,
maturation, and metabolism to drive aberrant inflammation [418].
Thus, one future direction of inflammaging research is to link physical
cues with chemical cues, thus generating a better understanding of
immunological changes with age.
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ABBREVIATIONS
Abbreviation Definition
ABCs age-associated B cells
AD Alzheimer’s Disease
AGEs advanced glycation end-products
AID activation-induced cytidine deaminase
ALS autophagy-lysosome system
AMPK 50-adenosine monophosphate-activated protein kinase
AP-1 activator protein 1
APCs antigen-presenting cells
ARDs age-related diseases
ATF6 ATG5 activating transcription factor 6 Autophagy-related 5
ATM ataxia-telangiectasia mutated
ATR ataxia telangiectasia and Rad3-related protein
BAX Bcl-2 Associated X-protei
C/EBP CCAAT-enhancer-binding proteins
CBP cyclic adenosine monophosphate response element binding

protein binding protein
cfDNA cell-free DNA
cGAS cyclic GMPeAMP synthase
CHOP CCAAT-enhancer-binding proteins homologous protein
CMA chaperone-mediated autophagy
COPD chronic obstructive pulmonary disease
COVID-19 coronavirus disease 2019
CRP c-reactive protein
CVD cardiovascular disease
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DAMPs damage-associated molecular patterns
DDR DNA damage response
DNA deoxyribonucleic acid
DNMT DNA methyltransferase
eIF2a eukaryotic translation initiation factor 2
ER endoplasmic reticulum
FFAs Free fatty acids
FoxO forkhead box protein O
GDF growth differentiation factor
GM-CSF granulocyte-macrophage colony-stimulating factor
GRO growth-regulated oncogene
H3K H3 lysine
HATs histone acetyltransferases
HDACs histone deacetylases
HERV-K human endogenous retrovirus-K
HSC hematopoietic stem cells
hTERT human telomerase reverse transcriptase
IFN interferon
IGF-1 insulin-like growth factor 1
IGFR insulin-like growth factor receptor
IKKb inhibitor of nuclear factor kappa-B kinase subunit beta
IL interleukin
INHBA inhibin Subunit Beta A
IP immunoproteasome
IR insulin resistance
IRE1a inositol-requiring transmembrane kinase/endoribonuclease 1a
IRF3 interferon regulatory factor 3
IRS insulin receptor substrate
IIS insulin and insulin-like growth factor 1 signaling
JNK jun n-terminal kinase
LC3B microtubule-associated protein 1 A/1 B-light chain 3
LINE1 long interspersed nuclear element 1
LKB-1 liver kinase B1
LPS lipopolysaccharide
MAVS mitochondrial antiviral-signaling protein
MCP monocyte chemotactic protein
MDA5 anti-melanoma differentiation-associated gene 5
miRNAs microribonucleic acid
MLH1 MutL homolog 1
MMP matrix metallopeptidase
MMR mismatch repair
mRNA messenger ribonucleic acid
mtDNA mitochondrial DNA
mTOR mammalian target of rapamycin
mTORC1 mammalian target of rapamycin complex 1
mTORC2 mammalian target of rapamycin complex 2
MuSCs muscle stem cells
NAD nicotinamide adenine dinucleotide
NADPH nicotinamide adenine dinucleotide phosphate hydrogen
NAFLD nonalcoholic fatty liver disease
ncRNA non-coding RNA
NF-kB nuclear factor kappa B
NLR nod-like receptor
NLRP3 nod-like receptor family pyrin domain-containing 3
NOS2 nitric oxide synthase
PAMPs pathogen-associated molecular pattern molecules
PARP1 poly(adenosine diphosphate-ribose) polymerase 1
PD Parkinson’s Disease
PERK protein kinase R-like endoplasmic reticulum kinase
PGC peroxisome proliferator-activated receptor gamma coactivator
Phox phagocyte oxidase
PI3K phosphatidylinositol-3-kinase
PRAAS proteasome-associated autoinflammatory syndrome
PRRs pattern-recognition receptors
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RIDD regulated IRE1a-dependent decay
RIG-I retinoic acid-inducible gene I
RNS reactive nitrogen species
ROS reactive oxygen species
RTPs retrotransposons
SARS-CoV-2 severe acute respiratory syndrome coronavirus 2
SASP senescence-associated secretory phenotype
SERPINE1 serpin family E member 1
SESNs sestrins
Sirt sirtuin
SSPC skeletal stem/progenitor cells
STING stimulator of interferon genes
T2D type 2 diabetes
TBK1 tank-binding kinase 1
TCR T cell receptor
TGFb transforming growth factor-beta
TLR toll-like receptor
TNF tumor necrosis factor
TRAF6 tumor necrosis factor receptor-associated factor 6
UPR unfolded protein response
UPS ubiquitin-proteolytic system
UV ultraviolet light
VAT visceral adipose tissue
YAP1 yes-associated protein 1
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